×

Inquire about your selection

* Required fields

×

Status message

Thank you for inquiring about our Education solutions. One of our sales representatives will be in touch within 1-2 working days.

Create your custom teaching solution

Choose what you want to teach

Animal Physiology

Biochemistry / General Biology

Exercise Physiology

Human Physiology

Medicine

Neuroscience

Nursing

Pharmacology

Psychophysiology

Choose a software platform that best fits your requirements

 
Lt

Course access via the web - in class,
in the lab and at home

Step by step student lab protocols

Basic concepts & analysis focus

Curriculum based modules

 
Lt LabStation

Course access in lab setting only

Step by step student
lab protocols

Basic concepts & analysis focus

Curriculum based modules

 
LabChart
LabChart

Authentic lab-based data
recording experience

Advanced experimental protocols

Flexible research-grade software

PV Loop and Spike Sorting

Recommended course content, software and
required hardware based on your selection

Finding the best content and equipment for you...

Content

Human Physiology with Lt

Lt guides physiology students though courses designed to reinforce introductory and advanced concepts in cardiovascular physiology, respiratory physiology, neurophysiology, muscle physiology, digestion, and kidney and water balance.

  • A Lt page showing a lesson about muscle structure

    Skeletal Muscle Structure
  • ECG Analysis in Lt

    Example of an ECG Analysis lesson in Lt
  • Brain structure

    Example of a brain structure lesson in Lt

The Otago Polytechnic School of Nursing uses Lt to increase student engagement and improve pass rates.

Sign up for a free trial to experience Lt. Get instant access to Human Physiology lessons and more.

Click on a lesson name for a synopsis and equipment list or scroll down to see all hardware,
including pre-made systems and kits for your subject area.

+Airflow

Record spirometry signals and analyze these to derive dynamic respiratory paramenters, such as forced expired volume in 1 second (FEV1). Compare these with parameters derived from a simulated airway restriction exercise. Students also learn how to perform peak flow tests to assess pulmonary function.

This lesson requires one of the PowerLabs below

+Body Temperature

Learn how to measure body temperature at a variety of sites, how to avoid common errors in measurement, and how to interpret alterations in body temperature. Explore the differences between conductive and convective heat loss with a Thermistor Pod and temperature probe.

This lesson requires one of the PowerLabs below

Products required for this lesson

+Glucose Absorption

Students investigate how the gut and kidneys handle a carbohydrate load of either glucose or starch. They will eat or drink a variety of substances, then collect their urine and finger-prick blood samples to measure the glucose levels over time.

+Heart and ECG

Measure and analyze the ECG and pulse, and discuss the relationship between them. Compare variations between the different leads of a 12-lead ECG and then perform an Einthoven triangle analysis (ECG example data provided).

This lesson requires one of the PowerLabs below

+Heart and Peripheral Circulation

Examine the direction of blood flow in the veins through a series of occlusion exercises. Practice palpation techniques on arm and leg arterial pulses. Record the radial pulse and discover arterial anastomoses and the connections in the blood supply of the hand.

This lesson requires one of the PowerLabs below

+Heart Sounds

Listen to heart sounds via a stethoscope by performing auscultation on a volunteer. Record and analyze an ECG in conjunction with a phonocardiogram (PCG) and pulse measurements.Investigate the timing of ECG events and peripheral pulse relative to heart sounds, to determine their relationships.

This lesson requires one of the PowerLabs below

+Kidney and Urine

Estimate your own bladder capacity, update your knowledge of kidney anatomy and view an abdominal CT scan, and perform urine testing on “patient” urine samples, and urine observation.

+Lung Volumes

Record and analyze spirometry signals to derive static respiratory parameters, such as lung volumes and capacities. Perform basic tests of pulmonary function and stimulate breathing with hyperinflated lungs.

This lesson requires one of the PowerLabs below

+Autonomic Nervous System

Complete the same exercises as performed in a clinical assessment of ANS function. Examine the effects of nerve stimulation and other stimuli on skin potential. Investigate heart rate variability with normal and deep breathing. Observe the physiological effects of the Valsalva maneuver and of rapid postural change. Finally, perform pupillary exercises.

This lesson requires one of the PowerLabs below

+Peripheral Nerve Function

Record an evoked EMG following electrical stimulation of the median or ulnar nerve at a variety of stimulating currents. Calculate latency and nerve conduction velocity.

This lesson requires one of the PowerLabs below

+Skeletal Muscle Function

Refresh your memory of the basic types of contractions. Record and measure muscular twitch responses to nerve stimulation and observe recruitment as stimulus strength increases. Test the effects of stimulus timing on muscle twitch summation and tetanus.

This lesson requires one of the PowerLabs below

+Spinal Reflexes

Refresh your knowledge of the major structures of the human brain and view MRI and CT scans. Test the knee and ankle jerk reflex responses with and without the Jendrassik maneuver. Students will also assess their pupillary and plantar reflexes.

This lesson requires one of the PowerLabs below

+Biofeedback

This laboratory provides an introduction to biofeedback. Students will use biofeedback to try and alter physiological process of which you are usually unaware. The three conditions students will try to control are: electrodermal response (skin conductance), skin temperature, and heart rate.

This lesson requires one of the PowerLabs below

+Diving Response

Investigate the effects of the diving response on heart rate and peripheral circulation in humans during simulated dives as well as breath holding.

This lesson requires one of the PowerLabs below

+EDR and Classical Conditioning

Students will learn about the electrodermal response. They will measure skin conductance, heart rate, and respiratory rate. Students will complete a classical conditioning experiment, in which a neutral stimulus is paired with an adverse stimulus to try and elicit a conditioned response.

This experiment can follow “Electrodermal Response (EDR)” or can stand alone.

This lesson requires one of the PowerLabs below

+EEG

Students explore the electrical activity of the brain. They record electroencephalograms, and analyze: the effect of various interfering signals; the changes to alpha and beta waves with eyes open and shut; and the effects of mental and auditory activity on alpha and beta waves.

This lesson requires one of the PowerLabs below

+Electrodermal Response

Students will be introduced EDR. They will test the effects of emotion, stress, and lying (polygraph test), on physiological responses. Students will measure and analyze skin conductance, skin temperature, heart rate, and respiratory rate.

This lesson requires one of the PowerLabs below

+EOG

In this laboratory students record electro-oculograms (EOG’s) in the horizontal plane. They will examine different eye movements including: angular displacement, saccades, smooth tracking, gaze-holding and gaze-shifting, and nystagmus.

This lesson requires one of the PowerLabs below

+Reflexes and Reaction Times

Students explore the similarities and differences of reflexes and reactions. Students first examine simple reflexes, and then use the PowerLab to examine their reaction times to stimuli under different conditions.

This lesson requires one of the PowerLabs below

+Sensory Illusions

Over a series of exercises students investigate mechanisms of sensory perception and discover techniques that send conflicting information to the central nervous system.

+Sensory Physiology

Students familiarize themselves with their senses and observe some sensory illusions. Learn how the body detects and perceives different sensations including touch, sight, taste, and movement. These activities are suitable for students at all levels, and can be performed without a PowerLab.

+Size-Weight Illusion

Students are introduced to the basic concepts of perception through an exploration of the size-weight illusion. The laboratory begins with the traditional size-weight illusion, and then takes students through a series of manipulations that lead to a more interpretive analysis of the illusion in the final exercise.

+Stroop Test

Students will familiarize themselves with the Stroop Test. They will investigate the interference of conflicting messages, and examine the effects of the Stroop Test as an experimental stressor. This lab is suitable for students at all levels.

This lesson requires one of the PowerLabs below

+Blood Pressure

Learn how to measure blood pressure with a stethoscope, blood pressure cuff and sphygmomanometer, then visualize changes during a measurement with a Cardio microphone. Assess peripheral circulation changes with a finger pulse transducer. Then examine the effect on blood pressure in the arm with changes in cuff location, cuff size, and arm position. Finally, ask how leg position affects leg blood pressure.

This lesson requires one of the PowerLabs below

+Breathing

Students record breathing movements with a respiratory belt transducer to investigate various aspects of breathing, including the ability to hold the breath and the relation between breathing and heart rate.

This lesson requires one of the PowerLabs below

Products required for this lesson

+Mechanics of Ventilation

Examine mechanical properties of the lung and chest wall by measuring pressures generated passively and by contraction of expiratory and inspiratory muscles.

This lesson requires one of the PowerLabs below

+Water Balance

Learn how the kidneys handle fluid loads. See how urine output and urine specific gravity differ after consuming isosmotic, hyposmotic and hyperosmotic solutions.

+Cardiorespiratory Effects of Exercise

Record an ECG, blood pressure, and respiratory movements from a healthy volunteer, and compare the recordings made when the volunteer is at rest, during exercise, and immediately after exercise. Students will examine which factors that control heart rate, blood flow and ventilation before, during and after exercise.

This lesson requires one of the PowerLabs below

+Cardiovascular Effects of Exercise

Record an ECG and the finger pulse from a healthy volunteer, and compare the recordings made when the volunteer is at rest and immediately after exercise. Students will examine the factors that control heart rate and blood flow to tissues before, during and after exercise.

This lesson requires one of the PowerLabs below

+Energy Expenditure and Exercise

Students are introduced to the concept of energy expenditure and the methods used to analyze substrate metabolism. Students will measure FEO2 and FECO2 during three different levels of exercise, and will calculated the rate of metabolic energy consumption as a function of mechanical energy expenditure.

This lesson requires one of the PowerLabs below

+Getting Started with Lt

In this module students learn how to record and analyze data in Lt. A "Pre-Lab" lesson shows students what to expect in Lt labs and lets them explore the types of signals they might record. They also practice their data analysis skills prior to the lab, where they record and analyze their own pulse.

+Introduction to Psychophysiology

Students use basic techniques to record psychophysiological variables and learn the principles behind the galvanic skin response (GSR), respiratory rate, blood pressure and electromyography.

This lesson requires one of the PowerLabs below

+Muscle and EMG

Record EMG during voluntary muscle contractions and investigate how coactivation and contractile force changes with increasing demand. Measure the decline in your Grip force during a sustained contraction and examine muscle fatigue. Discover how visual feedback, verbal feedback, and rest impact our ability to sustain muscle contractions.

This lesson requires one of the PowerLabs below

Software Platform

Lt is a cloud-based learning platform that bridges the gap between theory and practice.

Content

Over 340 fully editable nursing, medicine and physiology lessons.

Software

Create, customize and deliver your own interactive content that students can access anywhere.

Hardware

Students can record and analyze physiological signals in Lt using PowerLab, to reinforce theory through experimentation.

Equipment

Do you need hardware?*Hide hardware
Education KitsIndividual Products

Loading products...

Recommended PowerLab

Suggested Add-On Kits

These kits are only recommended for a few lessons, so may not be essential for your teaching. You can uncheck individual lessons above for a more personalized equipment list.

Ask us anything×

Disclaimer: The above lessons, software platform and equipment are not a final recommendation.
Please inquire about your selection above to discuss your needs with us and obtain a personalised solution.

* You may not need hardware if you're only using our software platform(s), or if you already have hardware.

Please select at least one content area (in step one) before moving to the next step.

×

Please select a software platform (in step two) before moving to the next step.

×