In this webinar Aaron Phillips, PhD, shares his research involving neural hemodynamic control in pre-clinical and clinical models.
Key Learning Objectives:
- Sympathetic neuro-anatomy relevant to blood pressure control
- Closed-loop control implemented in spinal cord stimulation approaches
- Dimensionality reduction approaches for hemodynamic analysis
- Optogenetic manipulation of sympathetic preganglionic neurons in preclinical models
- Electrical epidural stimulation for blood pressure stabilization after spinal cord injury
Abstract:
The nervous system and cardiovascular system are exquisitely linked in an effort to control hemodynamics and maintain organ perfusion. In many neurological conditions, cardiovascular control is disrupted, leading to inappropriate hemodynamics and organ trauma. This is particularly true in the context of spinal cord injury, where the disconnection of the supraspinal hemodynamic regulatory centers leaves the sympathetic nervous system orphaned, and prone to life-threatening erratic blood pressure.
In this webinar, Dr. Phillips reviews next-generation techniques for interrogating the sympathetic nervous system in the context of hemodynamic control, using both the clinical setting with humans and the preclinical setting with non-human animals. We will review the basic neurovascular anatomy, discuss new computational approaches for data analysis, review natural and biomimetic artificial closed-loop control systems for hemodynamic stability, review virally-mediated neuron tracing specific to sympathetic hemodynamic control, and describe neuron-specific sympathetic nervous system manipulation for establishing causal mechanisms through optogenetics and chemogenetics.
This event was sponsored by ADInstruments and produced in partnership with the American Physiological Society.
Related products:
SNA and Pressure Telemeter»
Smartpad»
Configurator System»
About the speakers:
Aaron Phillips, PhD
Associate Professor, University of Calgary
Dr. Aaron Phillips was trained in biosciences and mathematics. His appreciation of the elegant interactions between the nervous and cardiovascular systems, and how these interactions are disrupted in clinical conditions, has driven his research into the development of novel therapeutics for people with neurological health issues.
SNA and Pressure Telemeter
The Kaha Rat Sympathetic Nerve Activity (SNA) and Pressure Telemeter is the only commercially available telemetry device that allows concurrent measurement of SNA and pressure.
Contact us for more information.